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The Potential of Parallel Multi-Value Methods for the

Simulation of Large Real-Life Problems

P. Chartier

INRIA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France

Potential advantages and drawbacks of multi-value methods are discussed in

detail. This presentation leads in a natural way to the de�nition and the con-

struction of Diagonally-Implicit Multi-Stage Integration Methods (DIMSIMs). In

particular, it is shown that DIMSIMs should be soon e�ciently implemented in

a parallel environment.

1. Introduction

Ordinary di�erential equations (ODEs) arise in a wide variety of situations,
ranging from chemical kinetics (chemical reaction systems), to mechanics (equa-
tions of motions), to electrical circuits and to problems of 
uid 
ows. The
length of the interval, the number of equations as well as the sparsity of the
problem vary considerably from one �eld to the other. When either the inter-
val is enormously long, the size of the system enormously large or when the
problem has to be solved in real-time, the use of parallel computers may well
provide the answer.

However, as noticed by many authors [2, 16, 20], usual numerical methods
for the solution of ODEs are inherently sequential, and this observation has
prevented until recently the development of parallel methods. In our search for
new numerical methods for the initial value problem(

y0(x) = f(y(x)) 2 R
m ;

y(x0) = y0 2 R
m ;

(1.1)

we may distinguish, along the lines of [20, 35], several techniques open to some
parallelism :

1. dividing the computational cost of the right-hand side of the problem by
using di�erent processors for di�erent components,
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2. decoupling the system into independent sub-systems with fewer coordinates
via an iterative process : all sub-systems can then be integrated simulta-
neously provided there is a su�cient number of processors [38],

3. designing new methods with some intrinsic parallelism, such as block Runge-
Kutta methods [28, 29], Parallel Diagonally Iterated Runge-Kutta meth-
ods (PDIRKs) [21, 22, 31, 34, 36, 37], Multiply Implicit Runge-Kutta
methods (MIRKs) [30], General linear methods [18, 19, 32] or DIMSIMs
[4, 5, 7, 9, 10, 11, 12, 13, 14, 15].

It is out of the scope of this paper to discuss these various techniques and
methods. For a up-to-date review of parallel methods, one may refer to the
book on parallel methods for ODEs by Burrage [2]. Here we would rather
concentrate on a particular technique, usually referred to as \parallelism across
the method". More precisely, our aim is to identify the various methods within
the class of multi-value methods which have some potential for parallelism. It
is the belief of the author that there is much more to gain for implicit methods,
which are considerably more costly than explicit ones and however necessary
for sti� systems and the focus of this paper will re
ect this opinion.

In Section 2, we will brie
y present multi-value methods and give some ideas
of their computational costs and implementation features. DIMSIM methods
then appear as a convenient class of methods and we will exhibit their dis-
tinctive characteristics. Recent results in the construction of DIMSIMs will
be reported in Section 3 and some designing options will be examined into
some details. Finally, we will address in Section 4 the implementation aspects
of a �fth-order implicit DIMSIM and assess its performances on several test
problems in Section 5.

2. From multi-value methods to DIMSIMs

2.1. Multi-value methods

Multi-value methods can be regarded as a natural generalization of both r-step
linear multi-step methods and s-stage Runge-Kutta methods. However, they
are much more than the concatenation of those two classes, and they include a
wide range of new schemes.

Formalism A general multi-value method is de�ned by

{ an exact value function z(x; h) taking its values in R
r�m and furnishing

the interpretation of the method, -each of the r components of z(x; h)
represents a m-dimensional function related in some prescribed way to the
exact solution y(x)-,

{ a starting procedure S providing the initial approximation y[0] at x0 :

S : R
m ! R

r�m ;

y0 ! y[0] = S(y0) = z(x0; h0) +O(hp+10 );
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{ a set of equations giving a new approximation y[n+1] to z(xn+1; hn+1) from
an approximation y[n] to z(xn; hn). In their �xed step-size version (hn = h),
these relations take the following form

Y
[n+1]
i = h

Ps

j=1 aijf(Y
[n+1]
j ) +

Pr

j=1 uijy
[n]
j ; i = 1; � � � ; s;

y
[n+1]
i = h

Ps

j=1 bijf(Y
[n+1]
j ) +

Pr

j=1 vijy
[n]
j ; i = 1; � � � ; r;

or in an equivalent but more compact form,

Y [n+1] = h(A
 Im)F (Y
[n+1]) + (U 
 Im)y

[n];

y[n+1] = h(B 
 Im)F (Y
[n+1]) + (V 
 Im)y

[n];

where Im is the m-dimensional identity matrix, A = (aij), U = (uij),
B = (bij), V = (vij) and where

Y [n+1] =

266664
Y
[n+1]
1

Y
[n+1]
2

...

Y
[n+1]
s

377775 and F (Y [n+1]) =

266664
f(Y

[n+1]
1 )

f(Y
[n+1]
2 )
...

f(Y
[n+1]
s )

377775 : (2.2)

The four matrices A, U , B and V fully characterize the multi-value method
and are usually gathered for this reason in a tableau

M =

"
A U

B V

#
: (2.3)

ByM we will denote both the matrix above and the map corresponding to the
multi-value method.

The function z(x; h) has a simple form for known methods such as Runge-
Kutta or multi-step methods. For a Runge-Kutta method, one has

z(x; h) = y(x);

while for a linear r-step method

z(x; h) =

266664
y(x� (r � 1)h)

y(x� (r � 2)h)
...

y(x)

377775 :
In general however, the exact value function can be much more complicated,
and in order to get a precise idea of its various forms some acquaintance with
B-series is required.

9



2.2. The concept of B-series

B-series is a crucial concept in the de�nition of multi-value methods and in the
analysis of their order. It has been introduced by Hairer and Wanner [26]
and called B-series in honor of Butcher for his determinant contribution to the
theory of trees [8]. Let us now brie
y recall a few de�nitions related to trees :

Definition 2.1. The set of trees T is recursively de�ned by

1. ; belongs to T ,

2. t = [t1; : : : ; tn] belongs to T i� t1; : : : ; tn belong to T .

t = [t1; : : : ; tn] is the tree formed by joining the trees t1, ..., tn to a common

vertex which becomes the root of t.

Definition 2.2. The functions � (order) and � (number of labellings) are re-

cursively de�ned on T by

1. �(;) = 0, �(;) = 1.

2. If t = [t1; : : : ; t1| {z }
�1

; t2; : : : ; t2| {z }
�2

; : : : ; tn; : : : ; tn| {z }
�n

], where t1; : : : ; tn are all distinct,

then

�(t) = 1 +
Pn

i=1 �i�(ti), �(t) = (�(t)� 1)!
Qn

i=1
1
�i!

�
�(ti)

�(ti)!

��i
.

Definition 2.3. The function F (t)(y) is recursively de�ned on T by

1. F (;)(y) = y,

2. F ([t1; : : : ; tn]) =
@nf

@yn
(F (t1)(y); : : : ; F (tn)(y))

These various de�nitions are illustrated for all trees of order less than or equal
to 4 in Table 1 :

t ; r r

r

r

r r

AA�� r

r

r

r

r rr

AA�� r

r r

r

��AA
AA

r

r

r r

AA��
r

r

r

r

�(t) 0 1 2 3 3 4 4 4 4

�(t) 1 1 1 1 1 1 3 1 1

F (t) Id f fyf fyy (f; f) fyfyf fyyy (f; f; f) fyy (f; fyf) fyfyy (f; f) fyfyfyf

Table 1. Various functions de�ned on T

If a : T ! R
n is an arbitrary map of (Rn )T , a B-series is the formal series

B(a; y) =
X
t2T

h�(t)

�(t)!
�(t) (a(t)
 F (t)(y)) : (2.4)
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On the one hand, it can be checked that the exact solution y(x+h) is a B-series
with coe�cients identically equal to 1, that is to say

y(x+ h) =

1X
k=0

hk

k!
y(k)(x);

=
X
t2T

h�(t)

�(t)!
�(t)F (t)(y(x));

where the convergence of the series is ensured for instance for analytical y and
su�ciently small h. On the other hand, Butcher has shown that the numerical
solution after one step of a Runge-Kutta method starting from y(x) is a B-series
whose coe�cients can be expressed in terms of the coe�cients of the numerical
method. Conversely, any B-series may be interpreted as the numerical solution
after one step of a Runge-Kutta method (with a possibly in�nite number of
stages). As a consequence, we will only consider exact value functions which
can be represented by B-series of the form

z(x; h) =
X
t2T

h�(t)

�(t)!
�(t) (�(t)
 F (t)(y(x))) ;

where �(t) = [�1(t); �2(t); : : : ; �r(t)]
T
takes its values in Rr . This means that it

will be possible to obtain starting procedures exact up to any arbitrary order p
by constructing a set of r Runge-Kutta methods whose B-series coincide with
�1, �2, ..., �r up to pth-order terms. For instance, the exact value function of
an r-steps method has the following expansion

z(x; h) =

26666664

1

1
...

1

1

37777775
 y(x) +
X

t2T;t6=;

h�(t)

�(t)!
�(t)

26666664

(1� r)�(t)

(2� r)�(t)

...

(�1)�(t)

0

37777775
 F (t)(y(x));

and a possible starting procedure S for it is given by266664
�1�r

�2�r

...

Id

377775
where � is the numerical 
ow corresponding to any Runge-Kutta method of
su�ciently large order.

If a is a map from T to R such that a(;) = 1 and b from T to R
n , Hairer

and Wanner have shown that the composition B(b; B(a; y)) of the two B-series
B(a; y) and B(b; y) is again a B-series of coe�cients ab. Although this is
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a fundamental result for B-series, it is out of the scope of this introductory
section to give a complete description of the composition law. We will rather
develop in Table 2 the product (ab)(t) for all trees of order less or equal to 4.
This will be enough to get some insight. For a precise de�nition of ab we refer
the reader to [2] or [25].

t (ab)(t)

; b(;)

r a( r )b(;) + b( r )

r

r

a( r

r

)b(;) + 2a( r )b( r ) + b( r

r

)

r

r r

AA�� a( r

r r

AA��)b(;) + 3a( r )2b( r ) + 3a( r )b( r

r

) + b( r

r r

AA��)

r

r

r

a( r

r

r

)b(;) + 3a( r

r

)b( r ) + 3a( r )b( r

r

) + b( r

r

r

)

r

r rr

AA�� a( r

r rr

AA��)b(;) + 4a( r )3b( r ) + 6a( r )2b( r

r

) + 4a( r )b( r

r r

AA��) + b( r

r rr

AA��)

r

r r

r

��AA
AA

a( r

r r

r

��AA
AA
)b(;) + 4a( r )a( r

r

)b( r ) + (4a( r )2 + 2a( r

r

))b( r

r

) + 4
3
a( r )b( r

r

r

)

+ 8
3
a( r )b( r

r r

AA��) + b( r

r r

r

��AA
AA
)

r

r

r r

AA��
a( r

r

r r

AA��
)b(;) + 4a( r

r r

AA��)b( r ) + 6a( r )2b( r

r

) + 4a( r )b( r

r

r

) + b( r

r

r r

AA��
)

r

r

r

r

a( r

r

r

r

)b(;) + 4a( r

r

r

)b( r ) + 6a( r

r

)b( r

r

) + 4a( r )b( r

r

r

) + b( r

r

r

r

)

Table 2. Multiplication table

Multi-value methods as one-step methods According to a recent result from
Stoffer [33] strictly stable multi-value methods are essentially conjugate to
one-step methods. By strictly stablemethods we mean methods such that V has
all its eigenvalues within the unit disc except 1, which is assumed to be simple.
Note that this condition is ful�lled for most methods of practical interest.

More precisely, Theorem 2.3. of [33] implies that there exists an exact value

function z�(x; h) = B(��; y), �� 2 (Rr )T , possibly di�erent from z(x; h), and a
one-step method �(y) = B('; y), ' 2 R

T such that the diagram

R
r�m M�! R

r�m

z� " " z�

R
m ��! R

m
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commutes. Moreover, � has the same order as the multi-value method M. In
terms of B-series, this is equivalent to

B(��; B('; y)) = (B 
 Im)B(�
0; y) + (V 
 Im)B(�

�; y);

B(�; y) = (A
 Im)B(�
0; y) + (U 
 Im)B(�

�; y);

B(�0i; y) = hf(B(�i; y)); i = 1; � � � ; s:

Translated in terms of trees, this gives

8 t 2 T; ('��) (t) = B�0(t) + V ��(t); (2.5)

�(t) = A�0(t) + U��(t); (2.6)

where

�0(;) = 0; (2.7)

�0( r ) = [1; � � � ; 1]T := e; (2.8)

�0(t) = �(t)

nY
i=1

�(ti); if t = [t1; � � � ; tn]: (2.9)

Now, using the assumption of strict stability and relation (2.5) for t = ;, V can
be written as

V = ��(;)vT + eV ;
with eV ��(;) = 0, vT eV = 0T and vT ��(;) = 1. Let us now show how the
coe�cients '(t), ��(t) and �(t) can be constructed recursively under the as-
sumption that vT �(t) =  (t), where  is an arbitrary map from T to R. For

t = ;, relation (2.5) is satis�ed by de�nition of v and eV . As for equation (2.6)
it comes

�(;) = e = U��(;);

which is nothing else but the preconsistency condition, ensuring that f(B(�i; y))
makes sense for any h. Assume that '(t), ��(t) and �(t) are known for all trees
t of order less or equal to p�1 � 0 and consider a tree t of order p. As it can be
noticed from Table 2 and more generally from the de�nition of the composition
law, the product ('��) (t) is composed of

('��) (t) = ��(t) + '(t)��(;) +R(t);

where R(t) is an expression involving only trees of order less than �(t) and
greater than 0. Hence, we write equation (2.5) as

(I � eV )��(t) + ('(t) �  (t))��(;) = B�0(t)�R(t);

and it follows from a left multiplication by vT that

vT (I � eV )��(t)| {z }
 (t)

+ vT ��(;)| {z }
1

('(t) �  (t)) = vT [B�0(t)�R(t)] ;
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i.e.

'(t) = vT [B�0(t)�R(t)] :

On the other hand,

��(t) = (I � eV )�1 [B�0(t)�R(t)� ('(t) �  (t))��(;)] ;
= (I � eV )�1 [B�0(t)�R(t)] + ( (t) � '(t))��(;)

and it can be checked that vT ��(t) =  (t). Equation (2.9) now de�nes �(t)
and the construction can be continued inductively. Note that apart for t = ;
( (;) = 1)  (t) can be chosen during the process of construction;  should
thus be regarded as a degree of freedom.

For instance, ' and �� are given for trees of order less or equal to 2 in Table
3 with the notations W = (I � eV )�1, 
 = vTBe and c = Ae+ U��( r ) :

t '(t) ��(t) �(t)

; 1 ��(;) e

r 
 WBe + ( ( r )� 
)��(;) c

r

r

2vTB(A+UWB)e�2
2 2WBc � 2
W 2Be +

( ( r

r

) � 2vTBc +
2
2)��(;)

2Ac+ U��( r

r

)

Table 3. The exact value function and its corresponding one-step method.

Implementation costs For implicit methods, the equation

Y [n+1] = h(A
 Im)F (Y
[n+1]) + (U 
 Im)y

[n]

is implicit and has to be solved by Newton's method. If J denotes the Jacobian
matrix of f at a point close to y(xn), the simpli�ed Newton iteration, which is
the only one considered in practice, takes the form

(Is 
 Im � hA
 J) (Y (k+1) � Y (k)) =

�Y (k) + h(A
 Im)F (Y
(k)) + (U 
 Im)y

[n]:

This large linear system of size s�m represents the main computational cost
of the method. It indeed requires the LU -decomposition of (Is
 Im�hA
J).
For implicit linear multi-step methods, A has only one non-zero element, situ-
ated on the diagonal of A. As a consequence, the system under consideration
is mostly explicit, the remaining implicitness concerning only a m-dimensional
vector. As far as the non-linear system to be solved at each step is concerned,
multi-step methods have a minimal cost per step. For implicit Runge-Kutta
methods, i.e methods with r = 1, the matrix A is full and the cost of the resolu-
tion often considered as prohibitive for large systems. Several techniques have
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been proposed for lowering this cost to a level comparable to what is observed
for multi-step methods. They all make use of a similarity transformation of
the matrix A into a simpler form

A = T�1�T;

where � has a nice structure. For instance, for Singly Implicit Runge-Kutta
(SIRK) methods [1] or E�ective Singly Implicit Runge-Kutta (ESIRK) methods
[6] � is of the form2666666664

� 0 � � � 0

1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 � � � 0 1 �

3777777775
;

and leads to the resolution of s consecutive sub-systems of dimension m with
the same matrix Im � h�J . For Radau and Gauss methods [8, 27], � is block-
diagonal and allows for some savings as well. One of the great advantages of
multi-value methods is that A can actually be made diagonal, allowing for the
possibility to decouple the non-linear system into s sub-systems

Y
[n+1]
i = h�if(Y

[n+1]
i ) +

rX
j=1

uijy
[n]
j ; i = 1; : : : ; s;

which can be solved independently. With respect to the core of computations,
these methods can thus be regarded as parallel methods, with a computational
cost similar to multi-step methods.

2.3. Why are multi-value methods not more widespread?

Until recently and only since the apparition of DIMSIMs, very few multi-value
methods have been used. There are several reasons for that, related to the
obstacles encountered either in their construction or in their implementation.

Order conditions When one wants to design a multi-value method, one is con-
fronted with the necessity to solve order conditions. These conditions can be
here obtained from the analysis conducted in Section 2.2. ForM to be of order
p, � has to be of order p, i.e. its coe�cients '(t) have to coincide with those
of y(x+ h) for all trees of order less than or equal to p. These conditions on '
are known to be of the form

8t 2 T; �(t) � p; '(t) = 1: (2.10)
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M is of order p i� there exists a map �� 2 (Rn )T and a map ' 2 R
T satisfying

(2.10) such that

V ��(;) = ��(;);
U��(;) = e;

and such that relations (2.5, 2.6) are satis�ed for all trees of order less or equal
to p. For instance, we get for p = 2

V ��(;) = ��(;);
U��(;) = e;

vTBe = 1;

vT (BAe+BU(I � eV )�1Be) =
3

2
:

Our purpose here is not to construct a second order method, but to show the
high complexity of the order conditions. For order three, these conditions are
already hard to write down, unless clever simplifying assumptions are made (see
[2] for a description of such assumptions). We will see in the next subsection
how DIMSIMs overcome this di�culty by using a simplifying assumption on
the stage values Y [n+1] and on the exact value function.

Starting procedure The starting procedure of a general multi-value method can
be obtained once again from the analysis of Section 2.2. If the matrices A, U ,
B and V are given, it is possible to recover this starting procedure z(x; h) by
looking for its B-series. However, one then needs to construct e�ectively a set
of r numerical methods with the prescribed B-series. This is a quite heavy task
in the general case, if z(x; h) has no particular pattern. Consider for instance
a third-order method M with r � 2 such that

z1(x; h) = y(x);

z2(x; h) =
h2

2
F ( r

r

)(y(x)) +
h3

6

0B@F ( r

r r

A�)(y(x)) + 2F ( r

r

r

)(y(x))

1CA :

One has to construct a Runge-Kutta method (A; b; c) such that

bT e = 0; bT c =
1

2
; bT c2 =

1

3
; bTAc =

2

6
:

For instance, the following method

0 0 0 0
2
3

2
3

0 0
2
3

0 2
3

0

0 � 3
4

0 3
4
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furnishes a third-order approximation to z2(x; h). However, no less than 3
stages are necessary in this case, and the construction of such starting proce-

dures would soon become tedious for higher orders without some assumptions
on the structure of z(x; h).

Change of step-size Changing the step-size can be quite tricky for a multi-
value method having an exact value function with no special pattern. For
instance, for z(x; h) as in previous paragraph, an approximation of the term
fyy(y(x))(f(y(x)); f(y(x)))+2fy(y(x))fy(y(x))f(y(x)) is needed for any change
of step-size. The term fy(y(x))f(y(x)) is easy to estimate since it is equal to
y00(x). This is not the case of fyy(f; f) + 2fyfyf which di�ers from

y(3)(x) = F ( r

r r

A�)(y(x)) + F ( r

r

r

)(y(x)):

As a consequence, fyy(y(x))(f(y(x)); f(y(x))) and fy(y(x))fy(y(x))f(y(x)) have
to be approximated individually. In general, special formulae have to be con-
structed to this aim. For our example, one can restart the method from the
approximation of z1(x; h) = y(x) obtained at the current step with the Runge-
Kutta method designed in previous paragraph. Although possible in principle,
all this procedure introduces a lot of intermediate computations di�cult to
handle both from the point of view of implementation and from the point of
view of stability analysis.

2.4. DIMSIMs

DIMSIMs were introduced by J. C. Butcher in 1993 [9] as a mean to make
multi-value methods easy to construct and easy to implement. DIMSIM have
a lot of features which make them very attractive for practical purposes.

Interpretation of DIMSIMs The key idea to DIMSIMs is to consider exact

value functions with a simple form : if p is the order of the method under
consideration, z(x; h) is assumed to be a linear combination of full derivatives
y(k)(x) with weights �0 2 R

r , �1 2 R
r , ..., �p 2 R

r ,

z(x; h) =

pX
k=0

hk�k 
 y(k)(x):

The B-series B(�; y(x)) representing z(x; h) is such that whenever 0 � �(u) =
�(v) = k � p,

�(u) = �(v) = k!�k: (2.11)

As a direct consequence the composition ('�) (t) for ' � 1 is considerably
simpli�ed for �(t) � p, since we now have

8 t 2 T; �(t) � p; ('�) (t) =

�(t)X
k=0

 
�(t)

k

!
k!�k:
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This much simpli�ed formula will help in getting order conditions in a nice
form.

Di�erent groups of DIMSIMS DIMSIMs have been divided into 4 di�erent
classes depending on the structure of the matrix A, which is nevertheless always
assumed to be of the form :2666664

� 0 � � � 0

�
. . .

. . .
...

...
. . .

. . . 0

� � � � � �

3777775 :
The pattern of A has been chosen in order to minimize the computational cost
per step (see Table 4). Whenever all the coe�cients below the diagonal are

Type � ai;j ; j < i Parallelism Class of problems

1 0 Arbitrary No Non-sti�

2 6= 0 Arbitrary No Sti�

3 0 0 Yes Non-sti�

4 6= 0 0 Yes Sti�

Table 4. The 4 classes of DIMSIMs.

zero, the method o�ers some intrinsic parallelism, as explained in Section 2.2.
In the sequel, we will concentrate on type 4 methods, for which A is diagonal
with constant diagonal and on methods that are an immediate generalization
in the sense that diagonal elements of A may be di�erent.

In an orthogonal way, DIMSIMs may as well be divided into two groups,
according to whether their stage-order q is equal to their order p or to p � 1.

A multi-value method is said to be of stage-order q if its stage values Y
[n+1]
i

approximate the exact solution at some points xn + cih up to order q. Due to
the following result of Burrage and Moss [3], this assumption is also of great
signi�cance and is satis�ed for all DIMSIMs.

Theorem 2.4. Consider a multi-value method such that (2.11) holds. The

simplifying assumptions

cj

j!
=

1

(j � 1)!
Acj�1 + U�j ; j = 0; : : : ; p� 1;

where the product of vectors is meant to be component-wise, together with the

order conditions

�0 = V �0;
jX

k=0

�k

(j � k)!
=

1

(j � 1)!
Bcj�1 + V �j ; j = 1; : : : ; p;

imply that the method is of order p.
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Compared to the order conditions derived in Section 2.3, the conditions ob-
tained here are extremely simple. Order conditions given in the sequel will all
be based on this theorem.

Implementation of DIMSIMs Let us now demonstrate some of the practical
advantages of DIMSIMs :

{ starting procedure : due to the particular form of the exact value function,
getting started with a DIMSIM is not di�cult. Amongst various possibili-
ties, one is to perform one step of a Runge-Kutta method with stage-order
greater or equal to p (for instance a SIRK method). The derivatives of
stage values obtained can then be combined in an appropriate way to get
the desired approximation to y[0].

{ change of step-size : suppose the DIMSIM is of stage-order q equal to its
order. Then, it has been shown in [7] that the method can be reformulated
so as to approximate the Nordsieck vector. Changing the step-size is then
just a matter of scaling. For methods with q = p � 1, a similar procedure
is a-fortiori possible.

{ dense output : getting a highly accurate dense output is easily achieved by
combining the stage-values for example. If the method is expressed in its
Nordsieck form, this is even easier :

y(xn + th) �
�
[1; t;

t2

2
; : : : ;

tp

p!
]T 
 Im

�
y[n]:

3. Construction of parallel implicit DIMSIMs

3.1. A general framework

From now on, the focus will be put on DIMSIMs of type 4. This is motivated
by the fact that most large systems involve some sti�ness and thus necessi-
tate an implicit method, which in turn is costly and can greatly bene�t from
parallelism.

pth-order DIMSIMs with stage-order p In order to go a little further than
Theorem 2.4, we need to make some assumptions on r and s. Since it is more
convenient to work with square matrices, J.C. Butcher has derived the following
theorem :

Theorem 3.1. Let s = r = p and suppose that the DIMSIM is of the form"
A I

B V

#
;

with V e = e. It is of order p and stage-order p i�

B = B0 �AB1 � V B2 + V A;
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where the (i; j) elements of B0, B1 and B2 are respectively given byR 1+ci
0

�j(x)dx

�j(cj)
;
�j(1 + ci)

�j(cj)
and

R ci
0
�j(x)dx

�j(cj)
;

�j(x) being the polynomial
Q
k 6=j(x � ck).

Using this theorem is extremely easy. Suppose we choose for instance c =
[0; 1]T , than we have [9]

B0 =

"
1
2

1
2

0 2

#
; B1 =

"
0 1

�1 2

#
and B2 =

"
0 0
1
2

1
2

#
:

Taking

V =

"
v 1� v

v 1� v

#
and A =

"
� 0

0 �

#
;

we get

B =

24 1=2 v + v� ��+ 1=2 v + (1� v) �

�� 1=2 + 1=2 v + v� 3=2� 2�+ 1=2 v + (1� v)�

35 :
Linear stability The domain of stability of a numerical method is a fundamental
characteristic. The larger its intersection with the left-half plane, the better.
For the linear test problem(

y0(x) = �y(x);

y(x0) = y0;

the DIMSIM step to step formulae become

y[n+1] = (h�)BY [n+1] + V y[n];

Y [n+1] = (h�)AY [n+1] + Uy[n];

that is to say

y[n+1] =M(h�)y[n];

where M(z) is the stability matrix

M(z) := V + zB(Is � zA)�1U:

Similarly to any multi-step or Runge-Kutta method, a DIMSIM is said to be
A-stable i� the stability domain

S := fz 2 C ; 9C 2 R
�
+ ;8n 2 N; kM(z)kn � Cg
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contains C� (the left-half plane). We see that a point z of the complex plane
belongs to S i� the characteristic polynomial of M(z) has all its roots within
the unit disc and is such that the roots on the unit circle correspond to non-
defective eigenvalues of M(z). Using the maximum principle for the spectral
radius of M(z), we can formulate the following theorem from [17], based on
the Routh-Hurwitz criterion [25] :

Theorem 3.2. Let �(t; z) := det(M(z) � tIr) denote the characteristic poly-

nomial of M(z) and let "j be the coe�cient of !j , j = 0; : : : ; 2r, in

W (!; y) = (! � 1)2r�

�
! + 1

! � 1
; iy

�
�

�
! + 1

! � 1
;�iy

�
:

Moreover, let H be the 2r � 2r matrix

H =

26666666664

"2r�1 "2r�3 "2r�5 : : : "1�2r

"2r "2r�2 "2r�4 : : : "2�2r

0 "2r�1 "2r�3 : : : "3�2r

0 "2r "2r�2 : : : "4�2r
...

...
...

...

0 0 "2r : : : "0

37777777775
;

where "j = 0 for j < 0, and �(y) its principal minor of order (2r � 1). Then

the following set of conditions is su�cient for A-stability :8>>><>>>:
9y� 2 R

�
+ ;8! 2 C ;W (!; y�) = 0) Re(!) < 0;

8 y 2 R
�
+ ; "0(y) 6= 0;

8 y 2 R
�
+ ; "2r(y) 6= 0;

8 y 2 R
�
+ ;�(y) 6= 0:

(3.12)

For the method obtained in previous section, we have

M(z) =

24 �1=2 v(2+z)
�1+z�

1=2 �2+2 z�+2 v�zv
�1+z�

�1=2 2 v+2 z��z+zv
�1+z�

1=2 �2+4 z�+2 v�3 z�zv
�1+z�

35 ;
and

�(t; z) = t2 � 1=2
(4 z�� 2 zv � 3 z � 2) t

�1 + z�
+

1=2
z
�
�z�� 2 zv�+ 2 v � 2�+ 2 zv + 2 z�2 + 1

�
(�1 + z�)

2
:

If we further impose that the matrixM(z) has vanishing eigenvalues at in�nity,
v and � must satisfy the equations(

2 v � 2 v�� �+ 2�2 = 0;

�4�2 + 2 v�+ 3� = 0;
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and we �nally arrive at the following two methods

M� =

26664
3=2� 1=2

p
3 0 1 0

0 3=2� 1=2
p
3 0 1

9=2� 11=4
p
3 �3� 7=4

p
3 3=2�

p
3 �1=2�

p
3

11=2� 13
4

p
3 �3� 9=4

p
3 3=2�

p
3 �1=2�

p
3

37775 :
And we get

"0(y) = �1=4
�
�7� 4

p
3
��

9 y4 + 100 y2 � 56 y2
p
3 + 112� 64

p
3
�
;

"4(y) = �1=4
�
�7� 4

p
3
��

9 y2 + 28� 16
p
3
�
y2;

�(y) = �
�
�1351� 780

p
3
��

81 y4 + 252 y2 � 126 y2
p
3 + 364� 208

p
3
�

�
�
9 y4 + 4 y2 � 2 y2

p
3 + 28� 16

p
3
�
y4;

so that M� and M+ are A-stable.

3.2. L-stable methods

In some situations, it may be desirable to damp the very sti� components of the
solution. This has led to the de�nition of L-stability : a Runge-Kutta method
is said to be L-stable if its stability function vanishes at in�nity. For multi-
value methods, one can either require that �(M(1)) vanishes or that M(1)
vanishes. In the next two paragraphs, we will construct methods of both kinds.

Methods with zero spectral radius at in�nity Consider a r-step s-stage DIMSIM
with r = s of the form"

�Ir Ir

B evT

#
;

with vT e = 1 and B = B0 � �B1 � evTB2 + �evT . With these special choices,
the stability matrix becomes

M(z) = V +
z

1� �z
B;

with characteristic polynomial of the form

�(t; z) = det(evT +
z

1� �z
B � tIr);

= det(ere
T
r +

z

1� �z
eB � tIr);

= det(
z

1� �z
eB � tIr) + det(

z

1� �z
eBr�1 � tIr�1);

= tr � (a0 � b1z)

(1� �z)
tr�1 � z

(a1 � b2z)

(1� �z)2
tr�2 � : : :� zr�1

(ar�1 � brz)

(1� �z)r
;
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where eB is a matrix obtained from B by a similarity transformation and eBr�1
is its (r � 1)th main minor. The method being of order p = r, we have

�(ez; z) = O(zr+1);

which we can write as

ez(1� �z) = bF �z ez

1� �z

�
+O(zr+1);

where

bF (Z) = Pr�1
i=0 aiZ

i

1 +
Pr

i=1 biZ
i
:

bF is thus a rational approximation of a function F de�ned by

F

�
z

ez

1� �z

�
= ez(1� �z):

In [4], J.C. Butcher has shown that

F (Z) = 1 +

1X
n=1

(�1)n+1 �n

n+ 1
L0n+1

�
n+ 1

�

�
Zn;

where Ln(x) denotes the Laguerre polynomial
Pn

i=0(
n
i )(�x)i=i!. Now, if we

substitute z = 1 in �(z; t), we see that the method satis�es �(M(1)) = 0 i�
all the bi's vanish. In this case, the rational approximation we look for can be
obtained by truncating F after the Zr�1-term and imposing that

L0r+1

�
r + 1

�

�
= 0: (3.13)

It can be shown that �(z; t) satis�es the Hurwitz criterion for all values of r
between 1 and 8 [4] if we take for � the smallest middle root of (3.13). The
methodM� from previous section is an example of such a L-stable method for
r = 2.

Methods with vanishing stability matrix at in�nity Imposing thatM(1) = 0 is
a much stringer requirement and leaves very few free parameters. If we denote
by lj(x) the j

th Lagrange polynomial based on the abscissae cj , j = 1; : : : ; r,
we have the following theorem :

Theorem 3.3. Let us consider a r-step r-stage DIMSIM of the form"
A Ir

B V

#
;
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with A = diag(�1; : : : ; �s) and M(1) = V �BA�1 = 0. Then it is of order r

and stage-order r i�

�i =
li(1 + ci)

li(1 + ci) + l0i(1 + ci)
; i = 1; : : : ; r;

vi;j =
l2j (1 + ci)

(li(1 + ci) + l0i(1 + ci))lj(cj)
; i = 1; : : : ; r; j = 1; : : : ; r:

Note that if ci = �r + 1 + i, i = 1; : : : ; r, than the method obtained is the
r-step Backward Di�erentiation Formula (BDF). However, BDF su�er from a
limited stability and this seems to be a common feature of all these methods
[5]. In order to get A-stable methods, one consequently needs to relax some of
the conditions :

Theorem 3.4. Let us consider a r-step r-stage DIMSIM of the form"
A Ir

B V

#
;

with A = diag(�1; : : : ; �s) and M(1) = V � BA�1 = 0. Then it is of order

r � 1 and stage-order r � 1 i�

V = L�AL0;

where the (i; j) elements of L and L0 are respectively

lj(1 + ci) and l
0
j(1 + ci):

These methods have one order less but many potential advantages : they can
be easily written in the Nordsieck form, they allow easy local error estimate
and they are A-stable for some choices of the diagonal elements of A and of
the ci's up to very high orders (at least 12 [17]).

4. Practical implementation of a six-processors fifth-order

method

We shall now discuss various aspects of the implementation of a method, whose
characteristics are :

{ r = s = 6, p = q = 5,

{ M(1) = 0,

{ A-stable.

It has been derived using Theorem 3.4 with the special requirement that V is
upper-triangular for the Nordsieck formulation

z(x; h) =

266664
y(x)

hy0(x)
...

hp

p!
y(p)

377775 :
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Note that it can be shown that V is upper-triangular i� [5]

�i = �+ �ci:

Its tableau has the form :
2
66666666666666666666666666666666666666666664

2
5

0 0 0 0 0 1 �

2
5

0 0 0 0

0 7
15

0 0 0 0 1 �

4
15

�

11
75

�

6
125

�

1
75

�

32
9375

0 0 8
15

0 0 0 1 �

2
15

�

4
15

�

24
125

�

208
1875

�

544
9375

0 0 0 3
5

0 0 1 0 �

9
25

�

54
125

�

243
625

�

972
3125

0 0 0 0 2
3

0 1 2
15

�

32
75

�

96
125

�

1792
1875

�

9728
9375

0 0 0 0 0 11
15

1 4
15

�

7
15

�

6
5

�

29
15

�

8
3

0 0 0 0 0 11
15

1 4
15

�

7
15

�

6
5

�

29
15

�

8
3

�

2
5

35
12

�

80
9

15 �

50
3

1507
180

0 2
3

�

2
15

�

12
5

�

92
15

�

34
3

�

25
6

2135
72

�

260
3

535
4

�

1925
18

275
8

0 0 1
3

�

6
5

�

34
5

�

56
3

�

175
12

7175
72

�

2450
9

1475
4

�

8875
36

4675
72

0 0 0 0 �

44
15

�

44
3

�

125
6

9625
72

�

1000
3

1625
4

�

4375
18

1375
24

0 0 0 0 �

1
3

�

16
3

�

125
12

4375
72

�

1250
9

625
4

�

3125
36

1375
72

0 0 0 0 0 �

2
3

3
77777777777777777777777777777777777777777775

;

and c = [0; 1
5
; 2
5
; 3
5
; 4
5
; 1]T .

4.1. Local error estimation

In its variable step-size version, the previous method uses the formulae

Y [n+1] = hn(A
 Im)F (Y
[n+1]) + (UD(�n)
 Im)y

[n];

y[n+1] = hn(B 
 Im)F (Y
[n+1]) + (V D(�n)
 Im)y

[n];

where �n =
hn
hn�1

and1

D(�n) =

2666666664

1 0 � � � � � � 0

0 �n
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 0

0 � � � � � � 0 �pn

3777777775
:

It has been shown in [7], that the global error of a DIMSIM may be controlled
through an accurate estimate of the quantity

err = hp+1n (vT'p)y
(p+1)(xn�1);

where vT is the left-eigenvector of V such that v1 = 1 associated with eigenvalue
1 and where

'p = [
1

(p+ 1)! 0!
;

1

p! 1!
; : : : ;

1

1! p!
]T � 1

p!
Bcp:

1 Contrary to the methods with a rank-one V -matrix, zero-stability of previous method is

not strictly guaranteed for variable step-size, unless very restrictive assumptions are made.
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It can be checked that we have here

C := vT'5 =
5539

4500000
� 0:0012:

Now, the stage-order being equal to the order, an asymptotically correct es-
timate of h6n(v

T'5)y
(6)(xn�1) can be obtained by a linear combination of the

stage derivatives satisfying

6X
i=1


ihnf(Y
[n+1]
i ) = h6nCy

(6)(xn�1) +O(h7n);

and a simple Taylor expansion gives

[
1; : : : ; 
6] = C [0; : : : ; 0; 1] [e; c; : : : ;
1

5!
c5]�1;

= 3125 C [�1; 5;�10; 10;�5; 1]:

4.2. Simpli�ed Newton iterations

As explained in Section 2.2, we have to solve s = 6 sub-systems of the form

Y
[n+1]
i = hn�if(Y

[n+1]
i ) +

6X
j=1

uijy
[n]
j ;

by the simpli�ed Newton method. For the ith sub-system, it takes the form

(Im � hn�iJ)�Z
(k)
i = �Z(k)

i + hn�if(Z
(k)
i +

6X
j=1

uijy
[n]
j );

Z
(k+1)
i = Z

(k)
i +�Z

(k)
i ;

where Z
(k)
i is a hopefully convergent approximation to Y

[n+1]
i �

P6
j=1 ui;jy

[n]
j .

For the control of the iteration, we shall use the strategy developed in [27].

4.3. Step-size control strategy

We shall use the standard formula

hnew = hold

�
TOL

kerrk

� 1
6

;

in association with a formula based on PID-control [23]. However, in order to
save some computations, we will recompute the Jacobian only if hnew satis�es

hnew � 1:3hold or hnew � 0:8hold

in order to avoid too frequent LU-decompositions of the matrices Im � h�iJ

[27].
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5. Numerical tests

In order to demonstrate the correct behavior of the step-size control mechanism,
let us consider the Van der Pol equation as in [27] pp. 135 :(

y01 = y2; y1(0) = 2;

y02 = 1
"

�
(1� y21)y2 � y1

�
; y2(0) = �0:6;

(5.14)
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Figure 1. Results for " = 10�2

with " = 10�2 and " = 10�6. We have run our Matlab program with TOL =
ATOL = RTOL = 10�6 for both cases. It can be observed from Figure 1
and Figure 2 that the step-size is chosen appropriately even in the case of
extremely rapid change of the solution. On Figure 3, we present work-precision
diagrams for our method and the code VODE, which is based on a Nordsieck
formulation of linear multi-step methods. The number of function evaluations
for the DIMSIM method is divided by the theoretical speed-up, i.e. 6. So is
done for the number of LU-decompositions.

As a second example, we consider the Brusselator problem :

@u

@t
= A+ u2v � (B + 1)u+ �

@2u

@x2
@v

@t
= Bu� u2v + �

@2v

@x2

(5.15)

with 0 � x � 1, A = 1, B = 3, � = 1=50 and boundary conditions

u(0; t) = u(1; t) = 1; v(0; t) = v(1; t) = 3;

u(x; 0) = 1 + sin(2�x); v(x; 0) = 3:
(5.16)
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Figure 2. Results for " = 10�6

Using �nite di�erences on a grid of N points we obtain a 2N -dimensional ODE-
system [27]. We have run our program for N = 20 for di�erent tolerances. The
behavior of the code for TOL = RTOL = ATOL = 10�6 is described on
Figure 4. A work-precision diagrams are given in Figure 5 for both our method
and VODE.

6. Conclusion

Multi-value methods have been introduced primarily as a unifying tool in the
theory of numerical methods. We have tried to show however that they are
much more than this and that they contain a very rich range of new meth-
ods with clear advantages over traditional multi-step methods or Runge-Kutta
methods. With respect to their construction, DIMSIMs seem very attractive.
Several sub-classes of methods have been identi�ed for sti� problems, where
stability requirements usually lead to prohibitive costs. DIMSIMs combine the
advantages of Runge-Kutta methods (A-stability for high orders) and of multi-
step methods (low computational cost). Up to now, the di�culties encountered
in the implementation of multi-value methods have prevented them from being
used e�ciently. To a large extent, these di�culties have been overcome and
the tests presented here illustrate that a DIMSIM code can now be equipped
with all the features of a modern ODE-solver.

Finally, let us mention that DIMSIMs exhibit no order reduction for dif-
ferential-algebraic systems of index 1 or 2. As a consequence, they should be
considered as good candidates for the resolution of such systems. Another
potential �eld of application concerns Hamiltonian systems : it seems however
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Figure 3. Work-precision diagrams for the DIMSIM method and VODE.

very likely, according to recent results [24], that there exists no symplectic
multi-value method apart from standard symplectic Runge-Kutta.
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